中国地質調査業協会 岡山県支部 平成26年度技術講習会 平成26年9月26日(金)		
近年の土砂災害の教訓 ー表層崩壊と深層崩壊ー	• 表 	
千木良雅弘 京都大学防災研究所	• 深 - - -	
1		
それぞれに癖がある	Year Date 1998 26 to 31 Aug 1999 29 June 2000 -28-29 July 11-12 Sept 20 July	
• 深層崩壊は、急激かつ広域的に被害 (天然ダムの形成と決壊)	2003 9-10 Aug. Ditto 13 July Ditto 28-29 Sept 2004 1 Aug.	
• 特徴と発生の場	29 Sept. 29 Sept. 2005 6 Sept. 2006 19 July 2009 21 July 2010 16 July 2011 4 Septemb	
3	2012 12 July 2013 16 Oct 2014 20 Aug	

表層崩壊と深層崩壊

層崩壊

- 斜面表層の風化物や堆積物の崩壊
- 雨や地震によって多数発生することが多 いが、1か所あたりの被害は小さい

層崩壊

- 斜面深部の地質構造に起因する崩壊
- 発生頻度は低いが、被害は甚大
- ハード対策で避けることはむずかしい

近年の土砂災害

- 2014年広島 花崗岩

- 2013年伊豆大島 火山灰
 2012年阿蘇カルデラ 火山灰
 2011年東日本大震災時の福島県白河市の崩壊性地 すべり
- ・ 2011年台風12号による深層崩壊(紀伊半島)
 ・ 2010年庄原(広島県) 風化土(+黒土)
 ・ 2009年防府(広島県) 花崗岩

- 2008年中国汶川地震
 2006年岡谷(長野県) 火山灰土
 2005年台風14号による深層崩壊(宮崎県)

Year	Date	Trigger (T: typhoon)	近年の雨による斜面	崩壊 Geology	Large landslide	Shallow landslides
1998	26 to 31 August	Rain (Front)	Fukushima	Vapor-phase crystallized ignimbrite	-	0
1999	29 June	Rain (Baiu front)	Hiroshima	Granite	_	0
2000 -	28-29 July	Rain (Front)	Rumoi (Hokkaido)	Soft sedimentary rocks	_	0
	11-12 Sept.	Rain (Front+T14)	Tokai (Aichi)	Granite	_	0
2003	20 July	Rain (Baiu Front)	Minamata (Kumamoto) Hishikari (Kagoshima)	Andesite lava and pyroclastics	0	0
	9-10 Aug.	Rain (T10)	Hidaka (Hokkaido)	Sandstone and conglomerate	-	0
-	Ditto	Ditto	Ditto	Melange	_	0
	13 July	Rain (Baiu front)	Nagaoka (Niigata)	Weak mudstone	_	0
	Ditto	Ditto	Fukui	Volcanic rocks	_	0
	28-29 Sept.	Rain (T21)	Miyagawa (Mie)	Accretional complex (Hard sedimentary rocks)	0	-
2004	1 Aug.	Rain (T10)	Kisawa (Tokushima)	Accretional complex (Greeenstone and hard sedimentary rocks)	0	-
	29 Sept.	Rain (T21)	Ehime-Kagawa	Heavily weathered hard sandstone and mudstone	-	0
	29 Sept.	Rain (T21)	Saijo (Ehime)	Schist	0	0
2005	6 Sept.	Rain (T14)	Mimikawa (Miyazaki)	Accretional complex (Hard sedimentary rocks)	0	-
2006	19 July	Rain (Baiu front)	Okaya (Nagano)	Volcanic soil	_	0
2009	21 July	Rain (Baiu front)	Hofu (Yamaguchi)	Granite	_	0
2010	16 July	Rain (Baiu Front)	Shobara (Hiroshima)	Soil (Black soil)	-	0
2011	4 September	Rain (T12)	Kii Mountains (Nara, Wakayama)	Accretional complex (Hard sedimentary rock)s	0	_
2012	12 July	Rain (Baiu Front)	Aso (Kumamoto)	Volcanic ash	_	0
2013	16 Oct	Rain (T26 Wipha)	Izu-Oshima (Tokyo)	Volcanic ash	-	0
2014	20 Aug	Rain (Back building)	Hiroshima	Granite	_	0

Country	最近のアジアの土砂災害	Type of landslide	Fatality by landslides	
China	2008 Wenchuan earthquake	Landslide on natural slopes	>20000	
	Rainstorms after the 2008 Wenchuan earthquake	Debris flows	3029	
Taiwan	1999 Chi-Chi earthquake	Landslide on natural and valley fills of residential houses	39/Chiu-fen-erh-shan 29/Tsaoling	
	Typhoon Molakot, 2009	Landslide on natural slopes	More than 400 by the Shiaolin landslide	
Malaysia	Typhoon Greg, 1996	Landslide on natural slope	302	
Indonesia	2009 Padang earthquake	Landslide on natural slopes	More than 400	
Phillipine	2006 Rain	Landslide on natural slopes	1100 by Ginsaugon landslide	
Japan	2011 Tohoku earthquake	Landslide on natural and valley fills for residential houses	12 by landslides (mostly by tsunami)	
	Typhoon Talas, 2011	Landslide of natural slopes	56 by landslides	

花崗岩類

Granitic rock

Deep-weathering

深層風化

1972 年 西三河

1972 Nishimikawa

Microcracks are water pathways

風化花崗岩では風化と崩壊が繰り返す

風化花崗岩は表層の緩んだ層が 取り去られた後,

50年後くらいには再風化が進み,

23

次の崩壊の準備ができる

雨による表層崩壊

- ・ 群発しやすい地質がある(風化花崗岩,火山 灰,
- 同じ場所で繰り返す場合と,繰り返さない場合がある.(崩れる物の再生産の有無)
- ・ 強い降雨によって発生(50mm/1時間 以上)
- 降雨後半に強烈な雨がある場合,特に注意

地質と崩壊の 分布

土石流は花崗岩と 堆積岩 (ホルン フェルス) に発生

花崗岩の場合, 土石流の原因は 最上部の崩壊

ホルンフェルス の場合,土石流 の原因は水の噴 出?

地質と斜亜森後の空間分布 地質境界は50xメッシュ地形モデルの地上開口度と紛糾のパターンに基づき推定した。 Aがその何である。有景には20万分の1シームレス地質図を使用。

2タイプの花崗岩

中粒花崗岩 風化しやすくマサ土になりやすい 1999年災害時の崩壊の主体

細粒花崗岩 風化しにくく、大岩塊をつくる 2014年災害時の崩壊に多く含まれた

甚大な災害の要因2 被災家屋の多くが沖積錐の上にあった

広島豪雨災害のまとめ

被害の大きかった地域の土石流は, 花崗岩の崩壊 に起因している (八木3丁目, 緑井7,8丁目, 三入地区, 可部東地 区)

山の上部に分布する細粒花崗岩が大ブロックを形成し、それが土石流に大量に含まれていたため、通常のマサ土の土石流よりも破壊力が大きかった

広い被災地は,土石流の繰り返しによって形成され た沖積錐

Donghekoe(東河口) >1000 fatalities、2008 Wenchuan earthquake China

- 高速移動 (>100 km/hも普通)
- 長距離移動
- 天然ダムを作る

災害軽減のためには、備 えることが最も重要

- Move extremely rapidly (commonly >100 km/h)
- With long runout
- Makes landslide dams

To mitigate the devastating disaster induced by them, preparedness is the most important

備えること(場所と時を知る)

場所を予測すること

- ・降雨によるもの
- ・地震によるもの

深層崩壊が引き起こした災害

- ・ 土砂の直撃(宇井、伏菟野)
- 増水した川に突入して津波を発生(野尻、宇 宮原、坪内)
- 天然ダムの形成(熊野、赤谷、長殿、栗平)
 -長期的避難継続

台風12号と明治十津川台風

第3図 台風12号と明治十津川台風の天気図、それぞれの時刻は日本時、明治十津川台風の太線は750mmHg (999.9hPa)、735mmHg (979.9hPa)を表わす、明治十津川台風の中心は等圧線の中心と推定して×

84

深層崩壊発生に要した雨

従来

- 深層崩壊の発生した時が わからない場合が多かった
- 雨量の正確な分布がわからなかった
- どの程度の雨で深層崩壊 が発生するのか,正確には わからなかった。
- 台風12号での経験
- 19の深層崩壊の発生時が 特定できた(地震波の解 析,目撃情報)
- レーダーアメダス解析雨量
 によって、1km四方の雨量
 が1時間ごとに得られている
- 深層崩壊発生に至るまでの降雨状況が明らかになった

83

従来の深層崩壊は いずれも 発生後 研究

発生前の地形の状況は空中写真から 推定

空中写真では詳細な地形は観察できない

発生前の地形的特徴は良く分かっていなかった

台風12号による深層崩壊

- 39か所で発生前の詳細地形データが取得 されていた (国土交通省近畿地方整備局,奈良県)
- 発生前の詳細分析が可能
- 発生前に地形的前兆がある
- 場所予測研究に飛躍的な進歩

牧原2012. 天気、59,3

東京軽石 (TP)は神奈川から東京にかけて広く分布

(横浜市戸塚区. 笠間友博, 神奈川県 生命の星・地球博物館ウェブサイトか ら)

東京軽石の等層厚線図(実線,町田・森 山, 1968. 笠間2008) ¹⁴¹

降下火砕物の崩壊を引き起こした地震の先行降雨

台湾集集地震 1999年9月21日 ML 7.3, Ms 7.7(USGS)

深層崩壊では

- 移動速度は時速100km以上にもなる
- 移動物質はあまり混ざり合わない
- 上にあったものは下に巻き込まれな いで移動する
- 斜面の下方にあったものは、堆積物 の先端に押し寄せられる

深層崩壊は天然ダムを作る

- 降雨による深層崩壊でできた天然ダムは、
- 川が増水しているため、地震によるものに比べて早く決壊することが多い。
- 天然ダム形成の時と場所を知ることが必要
- 降雨 深層崩壊は, 地震観測によって発見でき ବ
- 地震によるものは、地震観測では検出できない

148

目次

- 表層崩壊
 - 雨による表層崩壊
 - 火山灰,風化花崗岩
 - 繰り返すものと繰り返さないもの
 - 表層崩壊を引き起こす降雨の特徴
 - 2014年広島豪雨災害 - 地震による表層崩壊の特徴
- 深層崩壊
- 降雨によるもの
 - 2011台風12号
 - 崩壊に要する雨,発生場の予測
 - 2009台風モラコット(台湾小林村)
- 地震によるもの
- ・降下火砕物 (火山灰など)の崩壊-2011年東北大地震など

149

- 移動十砂の挙動
- 天然ダムの検出
- 氷河に覆われたことのある地域の深層崩壊事情

Zischinsky (1966): On the deformation of high slopes

